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Abstract: We consider the problem of fitting a linear operator induced equation
to point sampled data. In order to do so we systematically exploit the duality
between minimizing a regularization functional derived from an operator and
kernel regression methods. Standard machine learning model selection algorithms
can then be interpreted as a search of the equation best fitting given data points.
For many kernels this operator induced equation is a linear differential equation.
Thus, we link a continuous-time system identification task with common machine
learning methods.

The presented link opens up a wide variety of methods to be applied to this system
identification problem. In a series of experiments we demonstrate an example
algorithm working on non-uniformly spaced data, giving special focus to the

problem of identifying one system from multiple data recordings.
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1. INTRODUCTION

In recent years kernel machines have attracted
a lot of attention in machine learning; for an
overview cf. (Scholkopf and Smola, 2002). In many
regression and classification tasks they are among
the top performers.

Given some training input-output data pairs
{(xs,9:) }i=1 ; © & xR where X is the domain
of the data; these methods estimate a function
f & — R which is then used for predictions
at previously unseen points x € X. All kernel
methods share the use of a similarity measure
R: X xX — R, the so-called kernel. The esti-
mated functions are given in terms of these kernels
centred at the training data points, i.e.

f@) = 3 aiR(a.x,) (1)

To obtain f, kernel methods typically minimize a
functional like

ol Ko+ C Loss {(f(z:),y:)}; (2)

over all & € R™. The term af Ka with K =
R(x;,z;) enforces smoothness in a manner de-
pendent on the kernel R, and the second term
Loss {(f(xi),y:)}; measures how closely the func-
tion fits the given data points. Common choices
for the loss function are the quadratic loss
1

L3 (f(@;) — yi)? or a one norm like loss such

=1

as i Soisy [ (@) = wil-

Model selection algorithms try to determine the
optimal kernel and its parameters for a given
problem. One also has to choose the regularization
parameter C' which measures the relative weight
of a prior belief of a smooth function versus pre-
ferring a function that exactly matches the given
data points (Wahba, 1990). Numerous methods
have been proposed to attack this task, including
most recently (Argyriou et al., 2005; Sonnenburg
et al., 2005). A simple, yet very common approach



is cross validation using the leave-one-out (LOO)
error to evaluate the generalization performance.

It is well known that kernels give rise to a linear
regularization operator P : H — Ly (X) such that
minimizing (2) is equivalent to minimizing

IPfI7, + C Loss {(f(2:),4:)}; (3)

over all f chosen from an appropriate function
space H (Wahba, 1990). For the commonly used
translation invariant, radial basis kernels on X C
RP this operator turns out to be a linear combina-
tion of derivative operators. Conversely, one could
be given P in advance and construct a kernel R
from it such that minimizing (2) yields the same
result as does (3).

One of the main points of this paper is that
minimizing (3) can be interpreted as solving the
operator induced equation

Pf=0 (4)

with the ”boundary conditions” that the solution
function f approximately interpolates the given
data points. The objective (3) tries to minimize
the residual error of (4) in an Lo-norm sense while
at the same time approximating the data points.
For radial basis kernels the implied equation (4)
is a linear differential equation.

Given the correspondence between kernels and
regularization operators, the second idea is that
determining the kernel R which models the un-
derlying data distribution best — as done by model
selection algorithms — is equivalent to finding an
operator P such that (4) is optimally fulfilled in an
Lo-sense. We could thus use an established model
selection algorithm to determine the structure and
the parameters of such an operator.

In the system identification literature there are
many methods proposed to estimate a continuous-
time differential equation from point sampled data
sets (cf. the reviews of Ljung (2004) or Miiller and
Timmer (2002)). Most methods use two indepen-
dent steps. For Fourier space methods a Fourier
transform of the given signal is obtained first.
If the signal is only given at discrete randomly
spaced points this requires estimating an approxi-
mation function, e.g. piecewise linear, as an initial
step. The identification of the differential equa-
tion then builds on the Fourier spectrum of the
resulting function. This may not be a very good
estimate of the true data structure as the function
estimation step introduces new information into
the process which renders the results dependent
on a somewhat arbitrary smoothing step. Simi-
larly, direct methods make use of estimated deriv-
atives. These are computed using some smoothed
model of a function, e.g. a spline estimate, where
the smoothing model is chosen independently of

the equation to be estimated. This problem has
also been described in (Moussaoui et al., 2003).

The method we propose uses again a two step
process, however, these steps are not independent.
The smoothness assumption used in the first part,
e.g. the estimation of an approximating function,
is based on the current guess of the underlying
equation. If this guess is close to the true structure
we are not introducing arbitrary information in
this step. Thus, we may be able to get better
results than what is possible if one uses a fixed
smoothness assumption. In the second step, we
evaluate the predictive quality of our estimated
smoothing function and adapt our current guess
of the operator P accordingly. If a low prediction
error can be achieved, the proposed equation
models the given data set well.

In Section 2 we will take a closer look at the
correspondence between a kernel R and its match-
ing regularization operator P in order to be able
to compute one given the other. Section 3 will
gather some intuitive ideas of how to estimate an
operator induced equation from data, and then
show how this exactly transfers to the model
selection problem if one applies the correspon-
dence described above. In Section 4 an explicit
example will demonstrate how a parametric dif-
ferential equation leads to a parametric kernel,
and how its parameters can be determined using
machine learning techniques. We will also show
how multiple datasets can be combined intuitively
into a single estimate of the necessary parameters.
Section 5 will summarize the findings and point at
some extensions of our method.

2. THE REPRESENTER THEOREM
REVISITED

The duality between (3) and (2) is a well-known
tool in the machine learning community (Wahba,
1990; Smola et al., 1998; Schaback, 2000). We
will restate the basic theorems here giving special
focus on how one can construct a kernel R from a
regularization operator P and vice versa.

For ease of notation we adopt the Dirac notation
commonly used in physics. |.) denotes a vector
of Lo(X) and (.| the corresponding dual element.
Then, (.|.) stands for a dot product in the Lo-sense
and for z € X a delta function centred at the point
x is denoted by |x). In a strict mathematical sense,
the delta functions |z) are not part of Lo(X).
However, this notation introduced by Dirac has
been proven to be very useful.

Theorem 1. (Representer theorem). Let P be a
linear operator with a finite-dimensional null
space spanned by {¢,},_, ;- Then the mini-
mizer of (3) is a function f (;f the form



f(x) = ZalR(x’wl) + Zﬂu(bu(mi)a

with real parameters oy, B;. The kernel R is given
as

R(z,y) = (z[(P*P)T|y) (5)
Here, P* is the adjoint operator of P and (P*P)f

denotes the Moore-Penrose pseudo-inverse of (P*P).

Thus, R(x,y) is the Green’s function of the oper-
ator P*P.

Theorem 2. (Inverse representer theorem). Given a

symmetric, bounded, positive definite' kernel R
let us define an integral operator K as (K f)(y) =
J R(z,y)f(x)dx. If the self-adjoint operator K is
also positive definite then minimizing (3) with

i\ T
P=(Kt)
yields the same result as minimizing (2).

A complete proof of the representer theorem is
given in (Wahba, 1990). For the inverse, see (Sch-
aback, 2000) or note that if we plug the P into
the forward theorem, then we recover the kernel
given. The correspondence is not entirely one-to-
one as operators P that just differ by the sign of
some eigenvalues give rise to the same kernel.

3. APPROACHES TO IDENTIFY AN
OPERATOR INDUCED EQUATION

Suppose we have acquired some data and assume
that the data generating function f follows an
equation of form (4) for a fixed operator P.

If we assume that the data can be modelled
by an exact solution f of (4), then a simple
approach to find P is to compute solutions of
the equation (4) for several guesses of P, and
select the one that best fits the data. E.g. given
some parametric structure of P = P(f) we could
attempt compute the parametric solution space
of (4) and use parametric fitting methods to
determine the optimal parameter set 6.

However, if the data cannot be modelled by an
exact solution of (4) for any fixed operator P,
the above parametric approach does not make
sense. This situation may occur for example if our
system at hand is intrinsically modelled correctly
by the equation Pf = 0 but external influences
disturb its behaviour from time to time. These ex-
ternal influences may be hard to model separately,
e.g. think of a tennis ball moving freely which is
hit by two players or where some wind is slightly
changing its path.

To determine P, we may again propose several
operators P, possibly in a parametric form P =

Lie for all finite sets {(a;,z)}; C R x A,

Zi,j oo R(xs, i) > 0.

P(#). But now we assume that the function f is
only an approximate solution to (4), i.e. the Loy
residual error is small. Of course, f should at the
same time be able to approximate the given data
points well. Thus, it is desirable to see whether
|PfI? + C Loss {(f(zi),yi)}; can be effectively
minimised for some f. Using the correspondence
between operators and kernels introduced in the
previous section, we observe that this is exactly
the objective of kernel machines, and the prob-
lem of determining P corresponds directly to the
model selection task of selecting the optimal ker-
nel.

For comparing differently structured operators
P or different parameter sets # one could use
the value of the objective function above. There
are some model selection algorithms that work
directly with it (Argyriou et al., 2005). However,
if the norm of P changes, results are not directly
comparable and have to be normalised. Many
algorithms therefore use a different approach: For
a given operator P it is easier to focus on the
predictive properties of the estimated function
on unseen data points. If we have estimated the
correct interdependency in the data, i.e. a good
structure of the operator P as well as the right
parameters 6, then the prediction properties of
our function are superior to other cases. In our
experiments we will apply this approach using a
simple cross validation scheme.

4. A DEMO EXAMPLE

We will demonstrate the above ideas in a simple
example in one dimension. We assume that the
given data can be modelled well by the approx-
imate solutions of a differential equation which
takes the parametric form

Puf = (VZ+uwh)f=0. (6)

Here, we just need to determine one parameter,
namely the frequency w. More complex situations
can be handled in an analogous manner.

4.1 The wave kernel

The null space of the operator P, is spanned
by the plane waves, i.e. M = 2 and ¢1(z) =
sin(wz), ¢p2(x) = cos(wzx). PEP, has the eigen-
functions |k) = e thus it can be written in
spectral notation as

PP, = /dk k) (—k* + w?)? (k|

The kernel R then is given by

R (x,y) = (y|(PiPw)"|)



= [ @k b e k)

1 ,
= | dk—— " ik(z—y)
/ (—k2 + w?)2 €
This is the Fourier transform of m, which
is
2
Ry(z,y) = —5(=rcos(r) +sin(r))  (7)
Tw

with r denoting w |z — y|. A plot of this kernel is
depicted in Figure 1.

This derivation is similar to that of the well-known
thin-plate spline. The resulting kernel R is only
conditionally positive definite,? as the Fourier
spectrum of R contains singularities and X = R
is not compact. However, the theory presented in
Section 2 still applies with slight modifications
(Schaback, 2000).

4.2 The data

The true distribution of the dataset is chosen
to be piecewise sinusoidal: We construct a sine
function of frequency w = 10 and amplitude 1.
At random locations which occurred on average
every 6 periods the phase of the sine jumps by an
amount drawn from a uniform distribution over
the interval [0, 27]. This corresponds to externally
enforced, new initial conditions at the jump sites.

The data points, i.e. the measurements accessible
to our algorithm, were sampled from this partial
sine at random locations with average density of
5 points per period yielding moderate sparsity.
Gaussian acquisition noise of standard deviation
o = 0.1 was added to the measurements.

4.8 Frequency from one dataset

A simple kernel regression method using the
quadratic loss function is kernel ridge regression.
The expansion parameters «, 3 can be found by
solving the following linear system (Wahba, 1990):

(o) ()-() o

where M; ; = R(x;,x;) + Fdij and T;,, = Tl',7 =
(bu(xZ)

In Figure 2 a reconstruction using different meth-
ods and kernels is shown. The parametric fit using
only sine and cosine functions that exactly fulfil
the assumed differential equation (6) is not able
to fit the true data generating function even if
the true frequency w is known. Therefore one
cannot expect to draw valid conclusions about the
parameter w from that approach.

2 je. for all finite sets {(aii,z9)};, € R x X with

Zi aipu(zi) =0Vw=1,..., M, Zz}j ;o R(xs, i) > 0.
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Fig. 1. The wave kernel centred at 0.
In addition, a non-parametric fit using the stan-
2
dard Gaussian kernel R(z,y) = exp(—%)
does not yield good results. Using this kernel cor-

responds to assuming the differential form (Girosi
et al., 1993)

& 2n

P,=> (-1 T, 9)

nl8n

n=0
The fit is especially poor in regions of low data
density.

The fit using ridge regression with the wave kernel
(7) and its null space, however, yields a good
result: It extrapolates well into regions of sparse
data points, as the correct differential model (6)
is implicitly used.

As demonstrated by this initial experiment select-
ing a differential equation by evaluating the gen-
eralisation properties of the corresponding kernel
machine seems promising.

One simple yet effective way to estimate the true
generalization error from only a finite sample from
the underlying data distribution is the leave-one-
out (LOO) scheme: one trains on a subset of
m — 1 data points and then evaluates on the
remaining one. If one iterates this procedure for
all possible combinations and averages the error,
one gets an almost unbiased estimator of the true
expected error. Even though this method sounds
very expensive to compute, there is an analytic
expression of the LOO-error which requires just
one training of the regression algorithm on the
whole dataset, as well as some additional work
of the same time complexity (Wahba, 1990). We
will use this simple cross validation scheme for
all our experiments below, both for computing
the optimal regularization parameter C' — which
is determined for each proposed kernel parameter
separately — as well as for comparing different
kernels and their parameters.

We used the test dataset of Figure 2 and tried
to determine the underlying differential equation
(see Figure 3). The Gaussian kernel and its cor-
responding differential equation induced by (9)
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Fig. 2. In both figures, the dashed line depicts the data generating function (phase jump at = = 1.6),
the crosses are the noisy measurements (m = 30). The other lines show reconstructions using
different methods : (solid,A) ridge regression with the proposed wave kernel (7) and its null space
at the correct frequency, (solid,B) ridge regression with Gaussian kernel and optimal parameter
o, (dotted,B) parametric fit of a plane wave at the correct frequency (The estimated value of
the amplitude is incorrect due to the phase jump in the middle of the dataset). The regularization
parameter C' was always chosen to minimize the leave-one-out (LOO) error.

do not match the data well. The wave kernel at
frequency w = 10.25 shows the best generalisation
performance. The found frequency is close to the
true underlying frequency of w = 10. Note that
the algorithm used just 30 noisy points as its
input.

If we increase the number of data points given
to the algorithm, the frequency determination
should become more exact. For different input
sizes we repeatedly computed the optimal fre-
quency (50 iterations). We used different initial
conditions and different phase jump locations to
produce independent datasets. In the table below,
the standard deviation Aw of the results is given.
The mean of L\the determined frequencies was al-
w

ways within = of the true frequency w = 10.

m ‘ 10 50 100 200 500 1000
Aw‘O.G? 024 024 0.17 0.07 0.04

Thus, the uncertainty of determining the fre-
quency decreases and a higher accuracy can be
estimated reliably if more data is available.

4.4 Frequency estimation from multiple datasets

It is possible to naturally integrate additional in-
formation contained in several independent data
recordings into a single identification process. This
may be useful if only a short acquisition period for
a signal is possible at each point in time, but we
are able to observe the same system repeatedly.
The data is then sampled from the same differen-
tial equation but with different initial conditions.

Given a candidate frequency w we compute the
LOO-error for each data recording separately us-
ing the corresponding kernel. Then we average
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Fig. 3. The LOO-error plotted for different para-
meter values and different methods (in brack-
ets the minimal attained value): (dotted)
a parametric model using the plane waves
at different frequencies w (0.09), (dashed)
ridge regression using the Gaussian kernel
with different A = 555 (0.06), (solid) ridge
regression using the wave kernel and its null
space at different frequencies w (0.05). The
wave kernel shows the overall smallest LOO-
error and the corresponding frequency w =
10.25 is close to the correct frequency w = 10,

the error of all datasets in order to evaluate the
predictive qualities of a proposed differential op-
erator/kernel. The correct differential equation is
taken to be the one which minimises this crite-
rion. We determine the regularization parameter
C separately for each dataset and each kernel
parameter.

To test our method we constructed N datasets
(m = 100) with independent initial conditions as
well as independent jump locations but with the
same frequency from our data model. As above,
we repeated the whole identification process 50



times with independent datasets and measured
the standard deviation Aw of the determined
frequencies. These are shown in the table below.
The difference between the mean of the detected
frequencies and the true frequency w = 10 was
always within a fraction of the standard deviation
Aw.

N | 1 2 5 10 50
Aw\0.241 0.171 0.125 0.084 0.048

5. CONCLUSIONS

We have presented a framework to estimate linear
operator induced equations — particularly differen-
tial equations — which can model given observa-
tions. The initial step of estimating a function is
interlinked with the system identification part.

Using the link between model selection and op-
erator estimation opens up a large variety of
model selection methods to be applied in this
system identification task. In our experiments we
have just shown the most simple algorithm. Com-
mon model selection methods are often based on
generalization error bounds that depend on the
proposed kernel (Chapelle et al., 2002). Some of
these bounds allow an analytic derivative with
respect to kernel parameters rendering the prob-
lem amenable to gradient descent methods. Such
approaches could speed up our example method
based on the LOO-error.

In many standard cases where a dense, equally
spaced data sampling is given, we do not expect
our method to outperform other approaches. How-
ever, it is very flexible when dealing with special
situations which may be difficult for standard
algorithms. We are able work with non-uniformly
sampled, sparse datasets and to integrate infor-
mation from multiple, independent recordings.

Empirically, kernel methods have been shown to
work well in a number of high dimensional appli-
cations. Even though we have only demonstrated
our method in a one dimensional toy problem,
the theory and the algorithms equally transfer
to the multidimensional case where many tradi-
tional differential equation estimation techniques
are problematic.

In theory it is possible to over-fit the operator
parameters 6 or to select a too complex structure
for P if one just evaluates the empirical prediction
error on a finite sample. This is particularly true
when the number of free kernel parameters 6 or
the dimension of the null space of P increases
towards the number of given data points. One
way to avoid over-fitting is to include an addi-
tional regularization into the second stage opti-
misation over the kernel parameters (Ong and
Smola, 2003). However, this would require hav-
ing an explicit non-trivial prior belief regarding

the correct structure and parameter range of the
equation.

Although we consider the proposed approach the-
oretically intriguing, the experimental evaluation
is still preliminary. Future work will experimen-
tally test the method for higher dimensional prob-
lems and will explore ways to handle inhomoge-
neous differential equations.
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